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Abstract

Sustained activity in prefrontal cortex is associated with the maintenance of information during short-term memory (STM). We have

used impurity reduction criteria of classification trees to investigate how the behavioral performance of a monkey during STM is reflected

in the information content of three features of recorded signals: rates of individual neurons, oscillations in the LFP, and oscillations in

the spiking activity. The LFP power in all bands, but in the a and b bands in particular, is more informative than the firing rate of

neurons and the spike power with respect to the monkey’s performance.

r 2006 Published by Elsevier B.V.
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1. Introduction

Sustained activity in prefrontal cortex is associated with
the maintenance of information during short-term memory
(STM) [3–7]. Motivated by the controversial discussion of
the rate coding hypothesis [10] and the assembly hypothesis
[12] we investigated how the behavioral performance of a
monkey performing an STM paradigm reflects in the
information content of three features: rates of individual
neurons, oscillations in the LFP, and oscillations in the
spiking activity. For this purpose we used classification
trees, a method that identifies structure in the feature space
and ranks features according to their information content
Fig. 1.
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UNC2. Behavioral task and electrophysiological data

We recorded multi-unit (‘MUA’, 32 kHz sampling rate)
and field potential (‘LFP’, 1 kHz sampling rate) activities
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simultaneously from up to 16 fiber microelectrodes ar-
ranged in a 4� 4 matrix with 500mm spacing in the
prefrontal cortex of two monkeys. Signals were filtered
(:525 kHz (MUA) and 52150Hz (LFP) 3 dB/octave) and
digitized, preprocessed by rejecting artifacts (movements,
licking) and removing line noise at 50� :5Hz. In total we
analyzed four sessions with 1319 trials altogether (Sessions
(1) 227; (2) 505; (3) 332; (4) 255).
The behavioral task of the monkeys was a visual short

term memory task. The task consisted of a sample period
(first 500 ms) during which a sample stimulus was
presented, followed by 3 s of delay. After the delay a test
stimulus that was either a matching or non-matching visual
object to the sample was presented. The monkey’s task was
to discriminate between matching and non-matching
stimuli and indicate its decision by a button press
(match ¼ left, non-match ¼ right) on each trial. On
average, the monkeys gave correct responses in 80% of the
trials.

3. Method

We compared neuronal activity recorded during trials in
which the monkey gave a correct response with activity
83
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Fig. 1. Time course of the visual short term memory task: after a �0:520 s baseline, a sample stimulus is presented for 500ms(starting at time 0), followed

by a 3 s delay, and a second matching/nonmatching test stimulus. Time line is divided in 10 consecutive windows of 500ms each, from which the central

300ms are used (gray rectangles) to extract features of the signal: rate, spike power and LFP power.

A. Lazăr et al. / Neurocomputing ] (]]]]) ]]]–]]]2
UNCORRECTED

recorded during trials with a wrong response. For each
recording session we matched trials with correct and
incorrect responses with respect to their number and
temporal proximity. We divided the signal of each trial
into 10 windows of 500ms length from which we only
considered the central 300ms to make the windows
mutually independent (200ms sliding window). For each
window, we derived the spike rate by dividing spike counts
by the window size (300ms), and computed the spike
power and LFP power based on a multi-taper method for
frequencies of interest between 5 and 100Hz ([8], frequency
steps 5Hz, smoothing frequency of 10Hz). Based on the
spectral power estimated for each frequency of interest we
extracted the average power in four frequency bands (1)
5–10Hz; (2) 15–25Hz; (3) 30–50Hz; (4) 55–100Hz). Thus,
we derived a total of nine different features for each
channel, trial and temporal window: rate, four bands of
LFP power and four bands of spike power. To allow for
compatibility between sessions we ensured the same
number of extracted features per session by randomly
selecting the smallest number of channels existing in all
four experiments, which was seven, leading in total to 63
features per session.

To assess the discriminative performance concerning
correct and incorrect responses per session of each feature,
we employed classification trees based on the Gini Index
and entropy estimation [1,9]. Classification trees have been
widely recognized as an effective techniques for classifica-
tion in data mining. They were designed to explore data in
search of consistent patterns and relationships between
variables. A tree is constructed by recursively partitioning a
learning sample of data. Making use of the class informa-
tion for this learning sample, the splits are selected in such
a way, that for each step, the maximum separation between
different classes is achieved. The ideal split would divide
the data so that all items belonging to one class would be
completely separated from the items belonging to other
classes.

Different measurements have been proposed for evalu-
ating splits [1,9,11,13], but they all have the same basic goal
which is to favor homogeneity within each child node and
heterogeneity between the child nodes. The goal of splitting
is to produce child nodes with minimum impurity
(heterogeneity within a node) so that the difference
between the impurity of the parent node and those of the
children (impurity reduction: G) is maximized
Please cite this article as: A. Lazăr, et al., Importance of electrophysiologica
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G ¼ Iparent �
Xk

i¼1

pðiÞIðiÞ, (1)

where k is the number of child nodes (k ¼ 2 for a binary
tree) and pðiÞ is the fraction of items belonging to each child
node after the split. In our case, the impurity was assessed
using the Gini index (IG) and entropy (IE) measurements

IGðiÞ ¼ 1�
XC

j¼1

f ði; jÞ2, (2)

IEðiÞ ¼ �
XC

j¼1

f ði; jÞ log2 f ði; jÞ, (3)

where C is the number of classes and f ði; jÞ is frequency of
value j in node i.
One of the main advantages of using a decision tree

technique for classification is that this method inherently
estimates the suitability of features for the separation of
items belonging to different classes. This property can be
easily exploited when aiming for feature selection. Our goal
was to determine a ranking of the features of our extracted
signals in different periods of the STM task. Selection and
ranking of features is emergent from the classification tree
structure.
We investigated whether any of the described features

was informative in distinguishing between the two classes:
correct and incorrect responses. To this end we built a
classification tree for each of the 10 analysis windows that
were 300ms long and covered the baseline, sample, delay
and test period of the task. For each time window, one
decision tree was used to classify all trials according to the
two classes.
To build the classification tree, our approach was to use

one set of observations (learning sample) and cross validate
it with another completely independent set (testing sample).
The prediction for the testing sample gives information on
the generality of the tree. Having a similar performance in
training and test implies the extraction of the relevant
information describing the data and prevents overfitting.
To find the ‘right size’ of the tree that maximizes generality
we started with a maximally detailed tree and used pruning
of leaves until classification performance during test was
close to the one during training.
l signal features assessed by classification trees, Neurocomputing (2006),
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4. Results

Since our results of the optimal tree size based on
pruning and cross validation indicated that only small trees
can be reliably built on the analyzed data set, we assessed
the impurity reduction (G) based on the first level of the
trees corresponding to the first split. We assessed G for each
of 63 features of the spike and LFP signal in four
individual sessions with each 200 to 500 trials and in nine
epochs that covered the baseline, sample, delay and test
periods. Results based on the Gini Index and entropy were
similar.
UNCORRECTED P
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Fig. 2. Impurity reduction, G, for separation between correct/incorrect respo

Channels (A) rate, (B) LFP power, and (C) spike power. In A individual chann

displayed (a) 5–10Hz; (b) 15–25Hz; (c) 30–50Hz; (d) 55–100Hz).
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In Fig. 2, results from one of the four sessions are
presented. The session contains 505 trials (258 correct and
247 incorrect). For each of the nine temporal windows
(time line on the vertical as indicated on the right side of
the image), we computed the impurity reduction using rate
(left column), LFP power (center), and spike power (right
column). Since we considered seven randomly selected
recording channels, we obtain seven G values for rate, 7� 4
G values for LFP power and 7� 4 G values for spike
power. The four frequency bands for power considered are:
(a) 5–10Hz; (b) 15–25Hz; (c) 30–50Hz and (d) 55–100Hz.
ROOF
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Fig. 3. Average impurity reduction, Ḡ, (using Gini index) for separation between correct/incorrect responses assessed for nine features and nine periods in

time (see Fig. 1)
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Thus, we have in total 63 G values for each of the time
windows.

For individual channels and features the impurity
reduction ranges between 0 and 0.035 across baseline and
all periods of the task. Impurity reduction (G) values
increased during the test period for most LFP frequency
bands and channels, but also for rate on channel 5, and for
spike power on channel 2. Impurity reduction of different
features analyzed for the same channels are more similar
than G of the same feature from different channels. This
implies that all considered features reflect on some level the
same underlying mechanisms. Overall, low frequency
oscillations of the LFP have the highest discriminative
power between correct and incorrect trials.

To compare the discriminative power across different
periods of the task irrespective of the channel’s identity we
assessed the average impurity reduction Ḡ across all
channels (Fig. 3). In two of the four sessions we observed
an increased average impurity reduction Ḡ during the test
period for LFP power between 5 and 50Hz. The effect is
strongest for a and b bands and more moderate for the g-
band while the impurity reduction for the spike rate and
spike power features are comparably low. Remarkably, the
time course of Ḡ indicates that the impurity reduction
during the test period is 4 to 5 times higher than during the
rest of the task.
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5. Conclusions

By using classification trees we intended to rank the
importance of signal features for discriminative perfor-
mance. We found that the reliable size of extracted decision
trees was rather small (in the order of one to a few splits),
and that the classification performance was low. The
Please cite this article as: A. Lazăr, et al., Importance of electrophysiologica
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clusters, second, that single features were not highly
discriminative, and third, that differences between features
were rather small. Taken together this might either mean
that encoding and maintenance of information in the
prefrontal cortex relies on complex signals that express
multiple features which are only weakly modulated by
behavior, or, that signals which are strongly correlated to
behavior were not described by the signal we extracted and
analyzed.
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