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Abstract

The ‘unitary event’ analysis method was designed to analyze multiple parallel spike trains for
correlated activity. The null-hypothesis assumes Poissonian spike train statistics, however exper-
imental data may fail to be consistent with this assumption. Here we present a non-parametrical
signi�cance test that considers the original spike train structure of experimental data. The sig-
ni�cance of coincident events observed in simultaneously recorded spike trains is estimated on
the basis of the same spike trains, however recombined to sets of non-corresponding trials (‘trial
shu&ing’). Resampling from this set provides the distribution for coincidences re4ecting the
null-hypothesis of independence.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The assembly hypothesis postulates [5] that information processing in the cortex is
mediated by groups of neurons by their coordinated spiking activity and is supported
by a number of experimental studies (e.g. Ref. [11]). In order to test this hypoth-
esis, the unitary event (UE) analysis was developed [3,4] and enabled to study the
relation of spike synchronization to behavioral events [2,4,9,10]. In the UE-analysis,
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empirically observed coincidence counts are evaluated for their signi�cance based
on expectation by chance. The signi�cance is estimated using a Poisson distribution
parameterized by the expected number of coincidences, which is a function of the
product of the �ring rates of the contributing neurons. The implicit assumption is that
the observed spike trains follow Poissonian statistics. However, experimental data of-
ten fail to be compatible with this assumption (e.g. Ref. [8]). In the work presented
here we derive a non-parametric signi�cance test, that is based on the experimental
data, while respecting the original spike train structures. This is realized by combin-
ing shu&ing of trials, and subsequent resampling from the set of coincidence counts
of non-corresponding trials (‘CSR’-method). Thus, �rst we introduce the procedure
of trial shu&ing and the generation of the set of data containing coincidence counts
from individual trial combinations. Since we aim to compare the original found in
M trials, we derive in a second step the probability distribution of the sum of co-
incidence counts from M trials by bootstrapping [1]. This probability distribution is
representing the null-hypothesis H0 of independence which allows us to estimate the
signi�cance of coincidences detected in corresponding trials. Requirements on the num-
ber of bootstrap samples with respect to the precision of the signi�cance estimate are
discussed.

2. Destruction of intrinsic joint-events by trial shu�ing

To incorporate the null-hypothesis of independence, trials of the original data are
shu&ed to combine non-simultaneously recorded spike trains, and yield counts of
chance coincident events. The underlying assumption is that the spike trains recorded
in repetitive trials, i.e. under the same stimulus or behavioral condition, are realiza-
tions of the same neuronal process [6]. The latter is not required to be stationary in
time.

Number of coincidence counts resulting from all diIerent trial combinations compose
the set �. In case of N = 2 neurons, this set contains two classes of distinct subsets,
i.e. the set of coincidence counts resulting from simultaneously observed trials �s =
{!s}, and the set of counts from non-simultaneous trial combinations �0 ={!0} (with
�0 = � \ �s). This can be illustrated in matrix form (Fig. 1B), where elements of �s
can be found on the diagonal, and elements of �0 as oI-diagonal entries. In case of
more than two neurons (N ¿ 2), we de�ne the set of counts from trial combinations
with all trial indices being diIerent (‘completely shu&ed trials’) as

K0 = {!j(l1 ;:::;lN )|lh �= lk ; with h �= k; h; k ∈ 1 : : : N ∧ lh; lk ∈ 1 : : : M} (1)

and contains

S =

(
M

N

)
· N ! =

M !
(M − N )!

(2)

(M the number of trials) elements. A non-empty set �0 respects the condition M¿N ,
i.e. a minimum of N trials needs to be observed to allow shu&ing of trials. The number
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Fig. 1. Destruction of intrinsic patterns by trial shu&ing illustrated for two neurons. (A) Sketch of a set
of three trials (out of M) of two simultaneously recorded neurons. Coincident spike events are marked
as potential intrinsic joint-spike patterns; (B) Examples of two pairs of shu&ed spike trains from (A).
Coincident events (marked) occur by chance only; (C) Matrix containing the number of coincident events
per trial !l1 ;l2 detected in all possible trial combinations of M trials. l1; l2 ∈ 1; 2; : : : ; M indicate trial indices
of neuron 1 (horizontal) and 2 (vertical), respectively. Coincidence counts detected in simultaneous trials
enter the matrix on the diagonal (l1 = l2), oI-diagonal (l1 �= l2) elements result from shu&ed trials.

of elements in �0 increases rapidly with increasing number of trials and neurons
(Fig. 2A).

3. Generating the distribution of coincidence counts

To estimate the signi�cance of the number of coincidences O!s observed in the M
experimental trials, the probability distribution of the number of coincident events ex-
pected in M trials has to be estimated. For doing that we resample from the set of
non-simultaneous (single) trial combinations �0 all possible combinations of M ele-
ments and compute their sum O!∗

0 . The total set � of sums of all possible combinations
contains B elements (Eq. 3). The ideal estimate of the probability distribution for
coincidence counts p( O!∗

0) (see Ref. [7] for a full mathematical derivation) can be
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Fig. 2. (A) Number of shu&e elements (S) as a function of the number of simultaneously observed neurons
(N ) and the number of trials (M). (B) Number of possible bootstrap samples (B) of M non-corresponding
trial combinations as a function of the number of neurons and trials (note: logarithmic scaling of the y
axes).

constructed by forming the histogram (normalized) of all elements of � (see Fig. 3A,
top):

p( O!∗
0) =

(#�∈�|�= O!∗
0)

B
with B= |�| = SM : (3)

Fig. 2B illustrates that the size B of the set � is extremely large even for a small
number of trials (M), and increases even further for a larger number of trials and
neurons. Obviously, the construction of the probability distribution p( O!0) based on all
elements of � is not practical in general (but see also Ref. [7]). Thus, as an alternative,
we derive an estimate of (Eq. 3) on a random subset �� of � consisting of �¡B
elements:

p̂( O!∗
0) =

(#�∈��|�= O!∗
0)

�
: (4)

As expected, the accuracy of (Eq. 4) depends on the sample size � of the chosen
subset �� (compare Fig. 3A, top to Fig. 3A, middle and bottom). The in4uence of the
size of the subsample �� on the signi�cance estimation is discussed in the following.

3.1. Signi4cance estimation

The signi�cance of the empirical coincidences O!s detected in the simultaneously
observed trials may be expressed by the probability of �nding O!s or even more coin-
cidence counts in case of independent spike trains (‘joint-p-value’, [3]). Thus, instead
of using a Poisson distribution parameterized by the number of expected events [3],
we now estimate the signi�cance on the basis of the probability distribution derived
by shu&ing and resampling (Eq. 4):

�∗( O!s; ��) =
∫ ∞

O!s

p̂( O!∗
0) d O!∗

0 (5)

in the following abbreviated as �∗ (indicated by the area of gray bars of p̂( O!∗
0) in

Fig. 3A, bottom). Since the set �� underlying the signi�cance estimate is a random
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Fig. 3. (A) Probability distribution of coincidence counts from non-simultaneously recorded trials (N = 2,
M = 10). Top: ideal estimate of the probability distribution p( O!∗

0 ) for coincidences computed from all
elements of �. Middle, bottom: estimates p̂( O!∗

0 ) of p( O!∗
0 ) each based on a subset �� of � consisting of �

elements (middle: �=103; bottom: �=105). (B) Top: distribution of signi�cance estimates �∗ of O!s (area of
gray bars of p̂( O!∗

0 ) for O!∗
0 ¿ O!s in (A)) based on 104 Monte–Carlo simulations. Each simulation is based

on independently drawn subsets ��, each consisting of � = 104 elements. Normal approximation of p(�∗)
(solid line) with parameters O�∗ = 0:0448 and � O�∗ = 0:0010. Mean ((B), middle) and standard deviation (B,
bottom) of �ve estimates of �∗ as a function of �. The standard deviation decreases with �, while the mean
converges to the expectation value of �∗. In this example the required precision for O�∗ ± 0:01% (dashed
line) is reached at � = 0:6 × 105.

sample of �, the signi�cance �∗ itself is a random variable. Fig. 3B (top) illustrates
the distribution of signi�cance estimates �∗ of O!s, derived on the basis of random sets
�� from � for �x �. The distribution can be approximated by a normal distribution
(solid line in Fig. 3B, top). Thus, the best estimate of the signi�cance is given by its
mean O�∗, and its standard deviation � O�∗ yields a measure for the con�dence interval. It
can be shown that � O�∗ decreases with the sample size � of �� (Fig. 3B, bottom). By
setting a threshold on � O�∗ at the required precision for the signi�cance estimate (e.g.
0:01% as in Fig. 3B, bottom), we derive a truncation criteria for the minimal necessary
size � of the set ��.

4. Discussion

We have shown, that the approach of combined trial shu&ing and resampling (CSR-
method) allows us to estimate the signi�cance of joint-spike events. Coincidence counts
from simultaneously recorded spike trains are compared to coincidence counts resulting
from shu&ed trial combinations of the same data set. Since the number of possible
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combinations increases considerably with the number of trials (and neurons), the full
set � of combinations can in general not be considered due to computation time and
memory requirements. In Ref. [7] we discussed an approach which uses eUcient com-
binatorial methods to estimate the signi�cance based on �, which, however, is restricted
to limited number of trials and low number of coincidence counts.

Here we presented a reliable estimate of the distribution of coincident events for
signi�cance testing based on random samples of subsets of trial recombinations. The
precision of the signi�cance estimate can be adjusted to a requested level by succes-
sively increasing the size of the random subset. The method integrates well in the
scheme of the unitary event analysis [3,4] and provides an improved method for the
signi�cance estimation. In contrast to the approach in Ref. [3,4], (1) the assumption
of a speci�c underlying spike train model is not required, since the null-hypothesis
of independence is incorporated on the basis of the original experimental spike trains
including their temporal structure. (2) Assumptions regarding stationarity are relaxed.
A prerequisite of the method is that stationarity across trials is ful�lled, which actually
is the de�nition of a ‘trial’ [6]. However, here the assumption of stationarity in time,
implicit to most correlation analysis techniques, is not required.
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