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Abstract. The visual perception of contours by the brain is selective.
When embedded within a noisy background, closed contours are detected
faster, and with higher certainty, than open contours. We investigate this
phenomenon theoretically with the paradigmatic excitable FitzHugh-
Nagumo model, by considering a set of locally coupled oscillators subject
to local uncorrelated noise. Noise is needed to overcome the excitation
threshold and evoke spikes. We model one-dimensional structures and
consider the synchronization throughout them as a mechanism for con-
tour perception, for various system sizes and local noise intensities. The
model with a closed ring structure shows a significantly higher synchro-
nization than the one with the open structure. Interestingly, the effect is
most pronounced for intermediate system sizes and noise intensities.

1 The introduction

Object representation in the brain relies on two properties: first, the detection
of specific features (such as location and orientation) by individual neurons,
and second, the integration of features of extended objects through dynamic
association of neuronal assemblies [1]. Seminal experimental studies showed, for
instance, that assembly coding allows for scene segmentation in the cat visual
cortex [2, 3]: the response to individual objects in a scene, in that case a single
moving bar, was characterized by synchronization among neuronal assemblies
corresponding to the different parts of the scene, while correlations were ab-
sent in response to different objects, such as two moving bars with different
orientations. When the stimulus is a static contour, the different sections of the
contour map to different neurons in the visual cortex. It is hypothesized that
these neurons fire synchronously when the contour is perceived. The potential
beneficial role of synchrony in that context lies in the possibility that at the
following stages of cortical processing the receiving or downstream neurons will



be much more reactive to synchronous input than to temporally dispersed input.
In this way synchrony can effectively impact the dynamics of further stages of
information processing, and neurons that synchronize can have a higher saliency
than the ones that do not. Experimental observations show that contours em-
bedded within a noisy background are detected more efficiently if they are closed
than if they are open. Here we study this phenomenon theoretically in a one-
dimensional array of model neurons subject to noise, considering the effect of
boundary conditions in the synchronization efficiency. We also show that noise
has a beneficial role in this process by leading to a near zero-lag synchronization
in the firing of all neurons in the array.

The effect of noise in brain activity has evoked a large interest in recent
years. Stochasticity in neurons originates from different sources, including ran-
dom synaptic input from other neurons, stochastic switching of ion channels,
and quasi-random release of neurotransmitter by synapses. Despite (or maybe
because of) the many noise sources in neuronal networks, the brain acts very
reliably and needs only a very small amount of energy (about 12 W according
to Ref. [4]). A growing number of scientific results suggests that noise plays a
constructive role in brain activity. For instance, a noise-induced effect has been
demonstrated in the visual processing area of the human brain [5]. In that ex-
periment a periodic light signal was sent to one eye, whereas the other eye was
subjected by noise, represented by light with fluctuating intensity. The result
was that noise improved the processing of the periodic signal sent to the first
eye.

Coherence resonance (CR), also known as stochastic coherence, is a noise-
induced effect through which periodic oscillatory behavior arises and its coherece
is optimized by noise. It has been found that at a certain noise intensity the
system responds with a maximal periodicity, i.e. with an enhanced coherence.
Both an increase and a decrease of the noise amplitude away from this optimal
value lead to a decreasing of the coherence. CR has been observed in excitable
systems like the Hodgkin-Huxley model [6], the FitzHugh-Nagumo systems [7],
leaky integrate-and-fire models [8], the Plant/Hindmarsh-Rose neural model [9],
and in dynamic systems which besides show jumps between several attractors
[10]. Besides the neural context, CR can be found in climate [11] and laser models
[12, 13].

Array-enhanced coherence resonance (AECR) [14] is an extension of the de-
scribed noise-induced rhythm generation to an ensemble of many coupled ex-
citable oscillators. Interestingly, the quality of the coherence in a large ensemble
with diverse oscillators can be larger than in a single one with the same mean
properties. The results presented below show that AECR provides a potential
mechanism for contour perception, whose efficiency depends on the network
topology, which should explain why a closed contour is better perceived than an
open one.



2 The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model is a paradigmatic model describing the
behavior of firing spikes in neural activity [15]. The model was proposed in
Refs. [16, 17] as a simplification of the famous model by Hodgkin and Huxley
[16] and is a simple example of two-dimensional excitable dynamics. It describes
qualitatively the response of an excitable nerve membrane to external stimuli.
Important features are the inclusion of a refractory mechanism and the exis-
tence of different refractory states, as well as states of enhanced and depressed
excitability depending on the external stimulation. Beside the paradigmatic de-
scription of the firing spikes of neural activity [15], the FHN model is represen-
tative for activator-inhibitor dynamics of excitable media in general [18]. The
model reads:

εẋi = xi −
x3

i

3
− yi + ξi(t) + Di−1(xi−1 − xi) + Di(xi+1 − xi) (1)

ẏi = a − xi (2)

In a neural context, x(t) represents the membrane potential of the neuron and
y(t) is related to the time-dependent conductance of the potassium channels in
the membrane [15]. The dynamics of the activator variable x is much faster than
that of the inhibitor y, as indicated by the small time-scale-ratio parameter ε

and is fixed to ε = 0.01 throughout the following calculations. It is well known
that for |a| > 1 the only attractor is a stable fixed point. For |a| < 1, the limit
cycle generates a periodic sequence of spikes. The parameter a is the bifurcation
parameter and is fixed below to a = 1.05, in order to tune the system to the
excitable regime. The index i distinguishes the separate oscillators and runs
from 1 to N , the total number of coupled elements. The Gaussian (white) noise
sources ξi(t) satisfy 〈ξi(t)ξj(t

′)〉 = σ2
aδ(t − t′)δi,j with the noise intensity σ2

a.
We model the neurons in the visual cortex by diffusively coupled FHN and

consider in the present model only those neurons that map the visual contour.
We assume a constant and equal external stimulus to all neurons mapping the
contour, which leads to a constant reduction of the excitation threshold for
all involved neurons. This assumption results in a permanent reduction of the
parameter a in the model closer to the bifurcation point for all neurons, so
that the external stimulus need not appear explicitly in the model equations.
The neurons not involved in the contour mapping remain with high threshold
of excitation and are ignored. All FHN elements are thus in a excitable state
and remain in their rest state without spiking activity if no noisy stimulus is
present. The noise is absolutely needed to overcome the excitation threshold
and evoke spikes. We assume local Gaussian white noise subject to every neuron
with the same intensity σ2

a. The spikes are noise-evoked and mediated by the
local nearest neighbor coupling with diffusive property and the coupling strength
Di. Note that the coupling is instantaneous, i.e. it does not include any explicit
delay. Effective delay in the signal transmission will appear, however, due to the
natural inertia of each neuron in the chain to react to an input (see sec. 4 below).



We consider three spatial architectures: the uncoupled situation (Di = 0.0), a
linear chain (D1,...,N−1 = 0.02, DN = 0.0, Fig 1 bottom), and a closed loop
(Di = 0.02, Fig 1 top).
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Fig. 1. Schemes of a closed loop and a linear open chain.

3 Comparison of the synchronization of an open and a

closed contour

This section should shed light on the question of whether synchronization is
better in a closed contour than in an open one. We measure the degree of syn-
chronization Rsyn as the ratio of the variance of the mean field to the mean
variance of the individual elements [19]:

Rsyn =
〈x̄2〉 − 〈x̄〉2

1

N

∑N

i=1
(〈x2

i 〉 − 〈xi〉2)
=

Var(x̄)

Meani(Var(xi))
(3)

with the mean membrane potential x̄

x̄ =
1

N

N
∑

i=1

xi . (4)

The fully desynchronized state results in a synchronization measure Rsyn = 0,
whereas the complete synchronization amongst all oscillators is becoming man-
ifest by Rsyn = 1. Values between 0 and 1 describe states of partial synchro-
nization. The measure Rsyn detect only zero-lag synchronization, i.e. delay free
synchronization and express the average difference between the mean field and



the dynamics of the individual oscillators. For small ensembles Rsyn results in
values larger than zero also if one compares completely independent elements,
e.g. for only two oscillators each of them influences the mean field to 50%. To
eliminate this effect of the system size, we considere the fully uncoupled ensemble
as the baseline to compare open and closed structures.

We consider two main influences on Rsyn: the noise intensity σ2
a and the sys-

tem size N . First we discuss the synchronization measure Rsyn as a function of
the system size N for different fixed noise intensities σ2

a (Fig. 2). In the first case
(σ2

a = 0.01) the noise intensity is sub-threshold and only few and irregular spikes
were evoked. The dynamics is determined by the small noisy and uncorrelated
sub-threshold fluctuations. Hence the coupling does not play a significant role
and the loop and chain configuration are close to the reference of the uncoupled
chain. An increased noise intensity leads to a spiking behavior and the coupling
contributes to the dynamics. The next plot (σ2

a = 0.025) shows a clear difference
between the loop, the chain and the uncoupled case. For intermediate system
sizes the loop synchronizes the ensemble more effectively than the open chain.
Further increase of the noise to σ2

a = 0.2 optimizes the synchronization. The
difference between loop and chain is less pronounced, but the absolute synchro-
nization quality is enhanced, especially for large system sizes, i.e. the zero lag
synchronization becomes stronger. σ2

a = 1.0 is beyond the optimal noise intensity
and the synchronization is less than in the optimal case over the complete range
of N . Interestingly, in the non-optimal noise case but close to it, the closed loop
configuration shows a significant better performance than the open chain for
intermediate system sizes. Further increase of the noise intensity (σ2

a = 5.0) de-
stroys the synchronization. The system is determined by the random fluctuations
and the coupling is too small to smoothen the irregular spikes.

The previous plots of the synchronization measure Rsyn as a function of the
system size (Fig. 2) have shown a strong dependence of the performance on
the noise intensity. The noise evoking a maximal difference between open and
close contour differs from the overall optimal noise, and we see that intermediate
system sizes demand a noise strength for optimization different than larger sizes.
To investigate this issue further, we calculated Rsyn as a function of the noise
intensity σ2

a for two fixed system sizes (N = 16 and N = 64) and the same
coupling, in the spirit of stochastic and coherence resonance as a noise-induced
effect with a resonance like response curve. Besides the synchronization measure
Rsyn, we also computed the correlation coefficient ri,j and the mean correlation
coefficient r̄. The correlation coefficient ri,j is the value of the cross-correlation
function at time delay τ = 0.0 and reads:

ri,j =
〈xixj〉 − 〈xi〉〈xj〉

√

〈x2
i 〉 − 〈xi〉2

√

〈x2
j 〉 − 〈xj〉2

(5)

and r̄ is:

r̄ =
2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

ri,j (6)
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Fig. 2. Synchronization measure Rsyn versus system size N . The plots differ by the
noise intensities: a) σ

2

a = 0.01, b) σ
2

a = 0.025, c) σ
2

a = 0.2, d) σ
2

a = 1.0, e) σ
2

a = 5.0.
Each plot compares the synchronization in a closed loop, an open chain and in the
fully uncoupled case as the reference.

All these measures (Rsyn, ri,j , and r̄), plotted in Fig. 3, quantify the level of
zero-lag synchronization, and express the same behavior.

Figure 3 reveals a typical resonance-like behavior. Too small noise leaves
the oscillators near the stable fixed point without crossing the threshold. Too
large noise dominates the overall dynamics and the coupling can not provoke
synchronization. Only intermediate noise is able to improve the synchronization
amongst the neurons in combination with the coupling. For the two system sizes
considered, the closed contour of the loop surpasses the synchronization results
of the open chain. In the case of intermediate size N = 16, the relative advantage
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Fig. 3. Synchronization measure Rsyn and correlation coefficient versus noise intensity
σ

2

a. The left plot depicts a small ensemble (N = 16) and the right one shows the
behavior of a larger system (N = 64).

of the loop to the chain is most striking before and after the absolute maximum
located at σ2

a ≈ 0.3, and the bell-shaped resonance curve is relatively broad
compared to the narrower one for the large ensemble. For N = 64 the overall
maximal synchronization is reached at σ2

a ≈ 0.1, i.e. for a smaller noise intensity.

4 Near zero-lag synchronization by additive uncorrelated

noise

The measures used above take into account only zero-lag synchronization. Local
coupling and the limited transmission velocity of the signal leads normally to a
time lag along the signal chain, as can be seen in Fig. 4(a). In contrast to this,
experimental measurements show that synchronization with cell assemblies does
not exhibit a significant time lag [2, 3]. We therefore study in what follows the
time-lag in the cross-correlation function as a function of the noise intensity.

Specifically, we investigated an ensemble of N = 64 FHN oscillators in the
loop configuration, for varying additive noise intensity σ2

a. The results for the
open chain are not shown but they are comparable. We calculate the cross-
correlation functions of various pairs of elements, noted in the legend of each
diagram (Fig. 5), choosing oscillator #6 as a reference, without loss of general-
ity. The pair 6-6 is the auto-correlation function of the time series of oscillator
#6, and the pair 6-38 depicts the cross-correlation function for two oscillators
separated the maximal spatial distance in the system of 64 coupled FHNs. The
rasterplots corresponding to the cross-correlation functions Fig. 5 are plotted
in Fig. 4, and give a snapshot of the spiking activity in the three situations:
insufficient noise, optimal noise and too large noise intensity.

In the case of small noise nucleation occurs rarely and each excitation travels
from its nucleating oscillator to all the others. The locations of the noise-induced
nucleation events are fully random, The finite traveling time of the signal pro-
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Fig. 4. Raster plots to illustrate the behaviour of the spiking dynamics. The noise
intensity increases from top to bottom and left to right: a) σ

2

a = 0.04, b) σ
2

a = 0.06, c)
σ

2

a = 0.2, and d) σ
2

a = 1.0. Compare with the cross-correlation functions in Fig. 5.

duces a time delay of the spike time of elements far from the nucleation site.
Hence a growing spatial distance between neurons increases the time delay of the
signal response, as one can see in the raster plot Fig. 4(a), and in the correspond-
ing cross-correlation functions in Fig. 5(a). Small noise results in a non-zero-lag
synchronization, with the lag time depending on the spatial distance.

In the situation of optimal and intermediate noise intensity (σ2
a ≈ 0.2), mul-

tiple nucleation points appear almost simultaneously in the rasterplot [Fig. 4(c)].
The cross-correlation functions for all pairs, independently of their spatial sepa-
ration, show maximal correlation at zero lag. Thus an optimal noise intensity in
combination with local coupling leads to a zero-lag synchronization of all neurons
in the ensemble [Fig. 5(c)]. As we noted there is no input signal in the model,
thus the effect is fully noise driven.

Finally, too strong noise destroys the effect. In that case, noise is strong
enough to evoke spikes everywhere at random times. The formation of small
local synchronized cluster destroys the long range correlation completely, i.e.
the zero-lag and the non-zero lag synchronization. Only very adjacent pairs like
6:9, 6:6 (trivially) and 6:3 show correlations [Fig. 5(d)].
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Fig. 5. Cross-correlation functions for different noise intensities and oscillator pairs of
the closed contour of N = 64 FHNs. The noise intensity increases from top to bottom
and left to right: a) σ

2

a = 0.04, b) σ
2

a = 0.06, c) σ
2

a = 0.2, and d) σ
2

a = 1.0.

5 Conclusion

We compared the synchronizability of open and closed structures of noisy neu-
ronal networks, and relate it with the efficiency of contour perception in the
visual cortex. For small and intermediate sized neuronal networks, a closed con-
tour can be recognized better than a equally sized open contour. The effect shows
a resonance-like relation between synchronization and the noise intensity. Fur-
thermore, noise compensates the time lag in the signal transduction caused by
the finite value of the signaling velocity. Note that the coupling in our model is
instantaneous, so that the signaling velocity is not caused by axonal conduction
delays, but by the inertia of each neuron to react to an input. In the case of
insufficient noise, a clear time-lag can be seen in the cross-correlation function,
increasing with the spatial distance between the neurons. An optimal non-zero
noise enhances the correlation and synchronization amongst the neuron ensem-
ble, and shifts the maximal of the cross-correlation function to zero-lag as one
can see in experimental measurements [2, 3].
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