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Abstract. How can two distant neural assemblies synchronize their fir-
ings at zero-lag even in the presence of non-negligible delays in the
transfer of information between them? Here we propose a simple net-
work module that naturally accounts for zero-lag neural synchronization
for a wide range of temporal delays. In particular, we demonstrate that
isochronous (without lag) millisecond precise synchronization between
two distant neurons or neural populations can be achieved by relaying
their dynamics via a third mediating single neuron or population.

1 Introduction

Neural synchronization stands today as one of the most promising mechanisms to
counterbalance the huge anatomical and functional specialization of the different
brain areas [1–3]. In particular, it proposes the formation of transiently synchro-
nized neural assemblies during few hundreds of milliseconds as the underlying
process to bind several local neural dynamics. Consequently, neural synchrony
can provide a dynamic and reconfigurable mechanism for large-scale integration
of distributed brain activity and serve as an efficient code to complement the rate
modulation and overcome some of its limitations. The synchrony hypothesis has
been supported by experimental findings demonstrating that millisecond precise
synchrony of neuronal oscillations across well separated cortical areas plays an
essential role in visual coherent perception and other high-cognitive tasks [3, 4].

However, and albeit more evidence is being accumulated in favor of its func-
tional role as a binding mechanism of distributed neural responses, the physical
and anatomical substrate for such a dynamic and precise synchrony, especially
zero-lag even in the presence of non-negligible delays, remains unclear [4]. Several
mechanisms have been proposed to explain the appearance of synchronization
between neural populations. Inhibitory connections and gap junctions have been
proposed to increase the stability of the synchronous state [5]. In general, these



and other approaches require either the precise tuning of properties such as the
synaptic rise time or rely on rather complex architectures [6] while exhibiting
several limitations in the range of synchronization attainable.

In addition, the problem of the communication delays between the neural
units involved in the interaction, although fundamental, has been hardly faced
[7]. Conduction and synaptic delays between the brain areas which are observed
to synchronize can amount to several tens of milliseconds. How under such la-
tency times the reciprocal interactions between two brain regions can lead the
associated neural populations come into sync without almost any lag?

Here we propose a simple network motif that is able to naturally lead to the
zero-lag synchronization between two arbitrarily distant neural populations. The
basic idea is that when two spiking neurons interact not directly but through a
third mediating neuronal unit, the redistribution of the dynamics performed by
this central unit leads in a robust and self-consistent manner toward the zero-lag
synchronization of the outer neurons [8]. This simple network module is expected
to exist within the complex functional architecture of the brain and especially
within the reciprocal thalamocortical interactions. It is significant that recent
studies have demonstrated the constant latency between the thalamus (the main
relay unit of sensory information in the brain) and almost any area in the mam-
malian neocortex [9]. Remarkably, this occurs irrespective of the very different
distances that separate the thalamic nuclei and the cortex regions involved. This
means that an action potential generated in a thalamic cell will take the same
time to reach a cortical neuron independently of the thalamocortical afferent
used to propagate the spike. To our purposes, this implies that a thalamocorti-
cal circuit is an ideal representation of this network module. With the proposed
network motif the synchronous state can be achieved after the exchange of a
few spikes and consequently within a few tens of milliseconds. This time scale
is perfectly compatible with the required processing times of information found
experimentally [4].

2 Methods

In order to test the synchronization properties of such neural circuits we sim-
ulated the dynamics of Hodgkin-Huxley (HH) neurons that interact with each
other via reciprocal synaptic connections with an intermediate third neuron of
the same type.

2.1 Mathematical Model

The dynamics of the membrane potential of each neuron is modeled by the clas-
sical Hodgkin-Huxley equations [10] with the addition of appropriate synaptic
currents to mimic the chemical coupling between neurons.



The temporal evolution of the voltage across the membrane is given by

C
dV

dt
= −gNam

3h(V −ENa)− gKn4(V −Ek)− gL(V −EL)+ Iext + Isyn , (1)

where C = 1 µF/cm2 is the membrane capacitance, the constants gNa = 120
mS/cm2, gK = 36 mS/cm2, and gL = 0.3 mS/cm2 are the maximal conductances
of the sodium, potassium, and leakage channels, and ENa = 50 mV, EK =
−77 mV, and EL = −54.5 mV stand for the corresponding reversal potentials.
According to Hodgkin and Huxley formulation the voltage-gated ion channels
are described by the following set of differential equations

dm

dt
= αm(V )(1 − m) − βm(V )m , (2)

dh

dt
= αh(V )(1 − h) − βh(V )h , (3)

dn

dt
= αn(V )(1 − n) − βn(V )n , (4)

where the gating variables m(t), h(t), and n(t) represent the activation and
inactivation of the sodium channels and the activation of the potassium channels,
respectively. The experimentally fitted voltage-dependent transition rates are

αm(V ) =
0.1(V + 40)

1 − exp (−(V + 40)/10)
, (5)

βm(V ) = 4 exp (−(V + 65)/18) , (6)

αh(V ) = 0.07 exp (−(V + 65)/20) , (7)

βh(V ) = [1 + exp (−(V + 35)/10)]−1 , (8)

αn(V ) =
(V + 55)/10

1 − exp (−0.1(V + 55))
, (9)

βn(V ) = 0.125 exp(−(V + 65)/80) . (10)

The synaptic transmission between neurons is modeled by a postsynaptic
conductance change with the form of an alpha-function

α(t) =
1

τd − τr

(exp (−t/τd) − exp (−t/τr)) , (11)

where the parameters τd and τr stand for the decay and rise time of the function
and determine the duration of the response. Consequently, the the synaptic
current takes the form

Isyn(t) = −gmax

∑

τl

∑

spikes

α (t − tspike − τl) (V (t) − Esyn) , (12)



where gmax describes the maximal synaptic conductance and the internal sum is
extended over the train of presynaptic spikes occurring at tspike. The delays aris-
ing from the finite conduction velocity of axons are taken into account through
the latency time τl in the alpha-function. Thus, the external sum covers the
different latencies that arise from the existence of multiple synaptic connections
between two different neural populations. Excitatory and inhibitory transmis-
sions are differentiated by setting the synaptic reversal potential to be Esyn = 0
mV or Esyn = −80 mV, respectively.

Finally, the external current Iext stimulation is adjusted to a constant value of
10 µA/cm2. Under such conditions a single Hodgkin-Huxley type neuron enters
into a regime of periodic firing with a natural period of Tnat = 14.66 ms. When
inspecting the role of noise, white Gaussian stochastic fluctuations were added
to the otherwise constant level of the external current.

2.2 Geometry

We consider a neural circuit composed by two Hodgkin-Huxley neurons inter-
acting with a relay neuron of the same class. This mediating neuron is receiving
input from the two outer neurons and projecting output toward them. Latency
times are included in the interaction to capture the non-negligible conduction
delays occurring in the transmission of spikes. This neural circuit can be thought
as a simple model of two neuronal populations (α and β) interacting through a
set of neurons whose dynamics is summarized by a single mediating population
c with a given transfer function (see Fig. 1).
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Fig. 1. a) Sketch of a neural circuit with recurrent connections mapped to the interac-
tion between three neural populations (α, β, and a central population c.) b) Interaction
between populations α and β through the mediating element c with single (top) or dis-
tributed (bottom) synaptic delays.

Individual temporal delays of the arrival of presynaptic potentials (i.e., la-
tency times) were modelled by a gamma distribution to mimic the multiple con-



nections between the neural populations involved in the synchronization process.

The probability density function of the distribution of delays is then

f(τl) = τk−1

l

exp(−τl/θ)

θkΓ (k)
(13)

where k and θ are shape and scale parameters of the gamma distribution. The
mean time delay is given by τ̂l = kθ.

2.3 Numerical Integration

The set of equations (1-12) is numerically integrated using the Heun method
with a time step of 0.02 ms.

Starting from random initial conditions each neuron is first simulated without
any synaptic coupling for 200 ms after which frequency adaptation has occurred
and each neuron settles into a periodic firing regime with a well defined frequency.
The relation between the phases of the oscillatory activities of the neurons at
the end of this heating time was entirely determined by the initial conditions.
Following this period and once the synaptic transmission has been activated, a
simulation time of 3 seconds is recorded. This allowed us to trace the change in
the relative timing of the spikes induced by the synaptic coupling in this neural
circuit.

2.4 Data Analysis

The strength of the synchronization and the phase-difference between each in-
dividual pair of neurons (m, n) were derived by the computation of the order
parameter defined as

ρ(t) =
1

2
| exp(iφm(t)) + exp(iφn(t))| , (14)

which takes the value of 1 when two oscillators are moving in-phase and 0 in
an anti-phase regime. In order to compute this quantifier it is only necessary
to estimate the phases of the individual neural oscillators. An advantage of this
method is that one can easily reconstruct the phase of a neuronal oscillation
from the train of spikes without the need of recording the full membrane poten-
tial time series [11]. The idea behind is that the time interval between two well
defined events (such as action potentials) define a complete cycle and the phase
increase during this time amounts to 2π. Then, linear interpolation is used to
assign a value to the phase during the spike events.

Cross-correlation analysis of the membrane potentials was also computed in
order to check the results obtained from the order parameter estimation.



3 Results

Prior to the illustration of the results obtained from the direct simulation of
equations (1-12), we first characterize in Fig. 2 the response of a single Hodgkin-
Huxley neuron to the arrival of a presynaptic potential and the subsequent
change in the postsynaptic conductivity. In particular, we computed how much
the period of the oscillation of a single HH neuron is changed as a function of the
phase at which this single perturbation is received. This phase response curve
(PRC) contains useful information about the synchronization properties of the
oscillators involved.
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Fig. 2. a) Membrane voltage of an unperturbed HH neuron during a cycle of oscillation.
b) Alpha-functions with different rise and decay times indicated in the legend. c) PRCs
for excitatory synapses (Esyn=0 mV). d) PRCs for inhibitory synapses (Esyn=-80 mV).
The PRC is defined as ∆φ = 1 − Tper/Tnat, where Tper stands for the length of the
cycle containing the perturbation. φ represents the phase at which the perturbation
is received. The colors in panels c) and d) code for alpha-functions of the same color
shown in b). gmax = 0.2.

Figure 2 shows the trace of the voltage potential of an unperturbed HH neu-
ron and the phase response curves to alpha-functions with different synaptic
rise and decay times. The Hodgkin and Huxley neuron is known to produce a
response such that a perturbation can advance or retard the next spike as it
is seen in panel c) where an excitatory coupling was simulated. However, it is
observed in panel d) that in the investigated regime, an inhibitory synapse can
only retard the firing of the next action potential. It is also noticed that due to
the finite duration of the alpha-function the value of the PRCs for excitatory



synapses differs from zero in the neighborhood of a spike (φ = 0 , 1).

The different synchronization characteristics of inhibitory and excitatory
synapses in two-coupled neuron models and the role of the synaptic rise and
decay times can be attributed to the different features of their respective PRCs
[5, 12]. Nevertheless, here we propose a network module that naturally provides
a robust mechanism for synchronizing two neural populations with zero-phase
lag. This effect is based on the dynamical relaying provided by a third popula-
tion, and opposite to directly-coupled neuron models it turns out to be largely
independent of the characteristics of the synaptic transmission. Figure 3 displays
the time traces of the membrane potential for the three neurons coupled as in
the module of Fig.1 with excitatory synapses.
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Fig. 3. a), b), and c) show the evolution of membrane potential of the three neurons
interacting through the network sketched in Fig.1. Neuron 2 is the relay neuron. The
synaptic coupling is activated at t = 0 ms with a gmax = 0.5. The gamma distribution
of the latency times is chosen to be at the limit at which it tends to a delta distribution
centered in 8 ms. The alpha-function used for the synaptic coupling had a rise time of
τr = 0.1 ms and a decay time of 3 ms.

It is observed that once the synaptic coupling is activated the network mod-
ule consistently self-organizes toward the state in which the outer neurons syn-
chronize their spikes. The zero-lag synchronization arises as a consequence of the
relay and redistribution of excitatory postsynaptic potentials (EPSP) performed
by the central neuron. The EPSPs induced in such a neural circuit are respon-
sible to slightly modify the firing timing of the postsynaptic cells in a manner
that the outer neurons tend to fire at unison after a few spikes irrespective of



the initial conditions. We have checked that this phenomenon also occurs for
inhibitory synapses and different synaptic temporal scales.

To inspect if the unavoidable noise sources around a neuron are able to dis-
rupt the synchronization we simulated the dynamics of the HH neurons with in-
dependent additive white noise in the external current input of each cell. Figure 4
shows that even in the presence of moderate noise intensities the synchronization
process takes place.
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Fig. 4. The large panel shows the temporal evolution of the outer neurons in the
presence of noise once synaptic coupling is activated at t = 0 ms. The noise level
was adjusted to σ = 1 µA ms1/2/cm2. It is clear that even the spikes become more
irregular a good synchronization level is obtained at zero-lag. The inset displays the
cross-correlation function of the voltage temporal series for a 3 second simulation.

At this point, a crucial question is whether this synchronization transition
is particular to single latency synaptic pathways or it is maintained for broad
distributions of conduction delays. To answer such issue we have represented in
Figure 5 the order parameter of the neuronal oscillations of the outer cells for
several delay distributions. In particular, we scanned the shape factor and the
mean value of the distribution of delays. The results indicate the existence of a
broad region of delays (between 2 ms and 9 ms) where for almost any shape factor
the outer neurons come into sync. Only distributions with an unrealistic small
shape factor (nearly decaying exponentials distributions) are unable to produce
synchrony regardless the average delay of the synaptic connections. The drop in
the synchronization quality found around τ̂l ∼ 10 ms is associated to an irregular
firing state of the neurons where no locking behavior is found.

Thus, zero-phase synchronization can take place in such network module
even in the presence of broad distributions in the delays communicating two
neural populations. Similar behaviors are found for inhibitory synapses and
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Fig. 5. Order parameter of the phases of the outer neurons as a function of the shape
factor and mean delay of the gamma distribution of delays. gmax = 0.2, Esyn = 0 mV.
The alpha-function used for the synaptic coupling had a rise time of τr = 0.1 ms and
a decay time of 3 ms.

alpha-functions with different durations demonstrating that the synchronization
process in such a network is largely independent of the particular characteristics
of the PRCs of the neuron.

Up to now, only symmetrical distributions of delays have been considered
in the pathways from the relay neuron to each one of the outer units. However,
when different distributions are simulated for each of the pathways we have found
that the phase lag between the outer neurons usually deviates from zero with
the cell with the shortest mean distance to the relay unit leading the dynamics.
Nevertheless, it is quite remarkable that broad distributions (large shape factors)
allow for almost zero-lag synchronization even in the presence of differences of
several milliseconds in the average delay of both pathways.

4 Discussion

We have introduced a simple and extremely robust network motif that is able
to account for the zero-phase synchronization of distant neural elements in a
natural way. This robust synchronization arises as a consequence of the relay
and redistribution of the dynamics performed by a mediating neuron. As a con-
sequence and in opposition to previous works, neither inhibitory, gap junctions,
nor complex networks need to be invoked to provide a stable mechanism of
zero-phase correlated activity of neural populations even in the presence of large



conduction delays.

As a future direction we are working to provide a more physiologically de-
tailed model of the network motif here presented in order to compare with ex-
perimental data. In particular, for the relay or thalamic neuron we are including
a description of additional ionic channels (transient Ca2+ and K+ as well as a
persistent Na+ conductance). Neural population modeling for each of the three
involved pools of neurons is also under current research.

5 Acknowledgments

Research supported by the GABA project (European Commission, FP6-NEST
contract 043309).

References

1. Von der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biological
Cybernetics 54 (1986) 29–40

2. Rieke, F., Warland, D., De Ruyter van Steveninck, R.: Spikes: Exploring the Neural
Code. MIT Press, Cambridge (1997)

3. Varela, F.J., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase
synchronization and large-scale integration. Nature Reviews Neuroscience 2 (2001)
229–239

4. Singer, W.: Neuronal Synchrony: A Versatile Code for the Definition of Relations?
Neuron 24 (1999) 49–65

5. Van Vreeswijk, C., Abbott, L.F., Ermentrout, B.: When inhibition not excitation
synchronizes neural firing. Journal of Computational Neuroscience 1 (1994) 313–321

6. Lago-Fernandez, L.F., Huerta, R., Corbacho, F., Siguenza, J.A.: Fast response and
temporal coherent oscillations in small-world networks. Physical Review Letters 84

(2000) 2758–2761
7. Freeman, W.: Characteristics of the synchronization of brain activity imposed by

finite conduction velocity of axons. International Journal of Bifurcation and Chaos
10 (2000) 2307–2322

8. Fischer, I., Vicente, R., Buldu, J.M., Peil, M., Mirasso, C.R., Torrent, M.C., Garcia-
Ojalvo, J.: Zero-lag synchronization via dynamical relaying. Physical Review Letters
97 (2006) 123902(1)–123902(4)

9. Salami, M., Itami, C., Tsumoto, T., Kimura, F.: Change of conduction velocity
by regional myelination yields to constant latency irrespective of distance between
thalamus and cortex. PNAS 100 (2003) 6174–6179

10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of the membrane current
and its application to conduction and excitation in nerve. Journal of Physiology 117

(1952) 500–544
11. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A universal concept in

nonlinear sciences. Cambridge University Press (2001)
12. Goel, P., Ermentrout, B.: Synchrony, stability and firing pattern is pulse-coupled

oscillators. Physica D 163 (2002) 191–216


