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Multielectrode recordings have revealed zero time lag synchroni-
zation among remote cerebral cortical areas. However, the axonal
conduction delays among such distant regions can amount to
several tens of milliseconds. It is still unclear which mechanism is
giving rise to isochronous discharge of widely distributed neurons,
despite such latencies. Here, we investigate the synchronization
properties of a simple network motif and found that, even in the
presence of large axonal conduction delays, distant neuronal
populations self-organize into lag-free oscillations. According to
our results, cortico–cortical association fibers and certain cortico–
thalamo–cortical loops represent ideal circuits to circumvent the
phase shifts and time lags associated with conduction delays.

thalamocortical system � isochronous oscillations � phase locking �
long-range synchronization � axonal latency

Cells in the visual cortex of mammals tend to fire simulta-
neously when activated by related features of a visual

stimulus (1–4). This observation provided some of the early
evidence that the nervous system may use an internal temporal
code to process information. Since then, multicell electrophys-
iological studies have revealed the synchronous discharge of
neurons distributed in different structures of the cerebral cortex,
hippocampal formation, and thalamus (5, 6). Its biological
significance derives from the observation that such precise and
coordinated spike timing correlates with perception and behav-
ioral performance (7–10). Remarkably, synchrony of neuronal
activity is not limited to short-range interactions within a cortical
patch. Interareal synchronization across cortical regions includ-
ing interhemispheric areas has been observed in several tasks (7,
9, 11–14). The topological specificity and temporal unfolding of
the synchrony reported in such studies are in agreement with its
assumed role of subserving the effective ‘‘coupling’’ of the
neuronal dynamics of the respective regions (9, 15).

Beyond its functional relevance, the zero time lag synchrony
among such distant neuronal ensembles must be established by
mechanisms that are able to compensate for the delays involved
in the neuronal communication. Latencies in conducting nerve
impulses down axonal processes can amount to delays of several
tens of milliseconds between the generation of a spike in a
presynaptic cell and the elicitation of a postsynaptic potential
(16). The question is how, despite such temporal delays, the
reciprocal interactions between two brain regions can lead to the
associated neural populations to fire in unison.

Direct cortico–cortical fibers are major pathways of transareal
communication and thus one principal substrate for the estab-
lishment of long-range synchrony. For instance, severing the
corpus callosum was observed to disrupt the interhemispheric
synchrony among homotopic cortical areas 17 in the cat (17).
However, it is not clear whether direct excitatory cortico–
cortical connections alone can mediate the zero phase synchro-
nization of reciprocally coupled neurons for long transmission

delays (18, 19). Several mechanisms have been pointed out as
partially responsible for the enhancement of such synchrony.
Inhibitory synapses and gap junctions have been proposed to
stabilize the synchronous firing of cells under some specific
conditions and for a limited range of delays (20, 21). In the case
of the hippocampus, a canonical circuit of excitatory and inhib-
itory neurons have been shown to reproduce successfully the
experimental findings of long-range synchrony among hip-
pocampal neurons (5, 22, 23). Synaptic plasticity mechanisms
have also been shown to stabilize synchronous � oscillations
between distant cortical areas by reinforcing the connections the
delay of which matches the period of the oscillatory activity (24).

Nevertheless, significant long-range synchronization is ob-
served across different species with different brain sizes and at
different stages of the developmental growth of brain structures.
This requires that any generic mechanism for generating zero
time lag long-distance cortical synchrony maintains its function-
ality for a wide range of axonal lengths. Although it is possible
that developmental mechanisms compensate for the resulting
delay variations (25), it is still difficult to explain all of the
phenomenology of long-distance synchronization without a
mechanism that inherently allows for zero lag synchronization
for a broad range of conduction delays and cell types.

In this paper, we investigate a simple network motif (26) that
naturally accounts for the zero lag synchrony among two arbitrarily
separated neuronal populations. We want to stress the separation
of processes generating local rhythms or oscillations in a brain
structure from the mechanisms responsible for their mutual syn-
chronization. The model that we present below provides a proof of
principle for a synchronizing mechanism among remote neuronal
resources despite long axonal delays. The basic idea is that when two
neuronal populations relay their activities to a third mediating
population, the redistribution of the dynamics performed by this
unit leads to a robust and self-organized zero lag synchrony among
the outer populations (27, 28). Even if no particular brain structure
or physiological condition is intended to be faithfully reproduced,
this type of connectivity pattern is characteristic for the reciprocal
interaction of different cortical areas and the associative thalamic
nuclei, such as the pulvinar (29, 30), and as we shall show below it
can give rise to isochronous dynamics in remote cortical popula-
tions. To demonstrate this effect, we conducted extensive simula-
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tions with networks of Hodgkin–Huxley (HH) neurons and inte-
grate and fire (IAF) models to characterize the influence of long
conduction delays in the synchronizing properties of this network
module.

Results
Zero Time Lag Synchronization of Individual Neurons as a Self-
Organization Process. We started by studying the spiking dynamics
of a circuit composed of 3 HH cells with reciprocal delayed
synaptic connections (for a schematic representation of the
network architecture, see Fig. 1 Top). To inspect the role of such
connectivity in synchronizing distant neurons we considered a
configuration in which the isolated neurons had already an
intrinsic spiking dynamics and observed how the synaptic activity
modified the timing of their action potentials. By adding intra-
cellular constant current stimulation (10 �A/cm2), each isolated
neuron developed a tonic firing mode with a natural period of
14.7 ms. The initial phase of the oscillations of each cell was
randomly chosen to exclude trivial coherent effects. Finally, all
axonal conduction delays were set to a considerably long value
of 8 ms. Fig. 1 shows the evolution of the membrane potentials
under such conditions when excitatory synaptic coupling among
the cells is activated [see supporting information (SI) Materials
and Methods for further details].

Before the coupling is switched on, the 3 cells fire out of phase
as indicated by the left vertical guide to the eye in Fig. 1.
However, once the interaction between the 3 neurons becomes
effective at t � 0, a self-organized process, in which the outer
neurons synchronize their spikes at zero lag even in the presence
of long conduction delays, is observed. Notice that no external
agent or influence is responsible for the setting of the synchro-
nous state, but this is entirely negotiated by the network itself.

This mechanism of synchronization rests on the ability of an
excitatory postsynaptic potential (EPSP) to modify the firing
latencies of a postsynaptic neuron in a consistent manner. It
further relies on the symmetric relay that the central neuron
provides for the indirect communication between the outer
neurons. The key idea is that this network motif allows for the
outer neurons to exert an influence on each other via the
intermediate relay cell. Thus, the reciprocal connections from
the relay cell assure that the same influence that is propagating
from one extreme end of the network to the other is also fed back
into the neuron that originated the perturbation promoting the

synchronous state. It must be noticed, however, that a pair of
identical EPSPs elicited simultaneously on the outer neurons
does not have in general an identical effect on both neurons.
Actually, the effect of a postsynaptic potential on a neuron
strongly depends on the internal state of the receiving cell, and
more specifically on the phase of its spiking cycle at which the
PSP is arriving (31–33). Because the neurons are in general at
different phases of their oscillatory cycles, the effects of the
EPSPs (magnitude and direction of the induced phase shifts) are
different for the 3 cells. Nevertheless, the accumulation of such
corrections to the interspike intervals of the outer neurons is
such that after receiving a few EPSPs they compensate the initial
phase difference, and both cells end up discharging isochro-
nously, representing a stable state (see SI Materials and Meth-
ods). Our simulations also show that a millisecond-precise
locking of spikes can be achieved already after the exchange of
only a few spikes in the network.

A key issue of the synchronization properties exhibited by such
network architecture is whether the zero lag correlation can be
maintained for different axonal lengths or whether it is specific
to a narrow range of axonal delays. Fig. 2 displays the quality of
the zero lag synchronization between 2 HH neurons as a function
of the conduction delays. Two scenarios were studied: one in
which the neurons were directly coupled via excitatory synapses
(dashed line) and a second one in which the 2 neurons interacted
through a relay cell also in an excitatory manner (solid line). The
synchronization index is given by the order parameter defined in
the SI Materials and Methods. A value of 1 (zero) of this index
indicates perfect synchrony (uncorrelation) at zero lag. A quick
comparison already reveals that whereas the direct excitatory
coupling exhibits large regions of axonal conduction delays
where the zero lag synchrony is not achieved, the relay-mediated
interaction leads to zero time lag synchrony in 28 of the 30 delay
values explored (1–30) ms. Only for � � 3 ms and � � 10 ms, the
3 cells entered into a chaotic firing mode in which the neurons
neither oscillated with a stable frequency nor exhibited a con-
sistent relative lag between their respective spike trains. See also
Fig. S1 for a description of the phase relations among the 3
neurons as a function of the axonal delay.

Robust zero lag synchrony among the outer neurons was also
observed when the synaptic interaction between the cells was
inhibitory instead of excitatory. Different synaptic rise and decay
times within the typical range of fast AMPA- and GABAA-
mediated transmission were tested with results identical to those
reported above. These results indicate that the network motif of 2
neurons relaying their activities through a 3rd neuron leads to a
robust zero lag synchrony almost independently of the delay times
and sign of the synaptic interactions. We also conducted simulations
to test the robustness of this type of synchrony with respect to the

Fig. 1. Time series of the membrane voltage of 3 coupled HH cells N�-N�-N�.
At time t � 0 the excitatory synapses were activated. Conduction delay � � 8
ms. Vertical lines help the eye to compare the spike synchrony before and after
the interaction takes place.

Fig. 2. Dependence of zero time lag synchronization as a function of the
axonal delay between neighbor cells for a scheme of 2 coupled neurons
(dashed line) and 3 coupled neurons (solid line). In the case of the 3 interacting
cells, only the synchrony between the outer neurons is plotted here.
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nature of the relay cell. The results indicate that when a relay cell
was operating in a parameter regime different from the outer ones
(such as different firing rate or conductances), the zero lag syn-
chrony among them was not disturbed. Remarkably, even in the
case where the relay cell was operating in a subthreshold regime,
and thus only spiking because of the excitatory input from any of
the outer neurons, the process of self-organization toward the zero
lag synchrony was observed. It is worth mentioning that in all cases
such firing synchronization is achieved through small shifts in the
spiking latencies that left the mean frequency of discharges (rate)
almost unchanged (the largest variations observed were smaller
than a 9% relative change).

Dynamical Relaying-Based Synchronization Is Robust to Broad Distri-
butions of Axonal Delays. The axons that form cortico–cortical or
thalamo–cortical fibers differ in diameter, myelin thickness, and
internodal distance. The variability from 1 axon to another of these
characteristics affects the speed of propagation of action potentials
and eventually translates into the existence of a whole range of
latencies in the neuronal communication between separate brain
areas. Thus, conduction times along fibers are more suitably
considered as a spectrum rather than a single latency value (16, 34).
To tackle this issue we modeled the dispersion of axonal latencies
by assuming that individual temporal delays of the arrivals of action
potentials (i.e., latency times) follow a � distribution (see Eq. S13
in the SI Materials and Methods). This mimicked the variability
among the different axons connecting 2 pools of neurons. Because
data about axonal distributions of conduction velocities in long-
range fibers is limited (16, 34), and there is probably not a unique
prototypical form of such distributions we decided to explore a
whole family of � distributions with different shapes. Fig. 3 Left
illustrates different � distributions of axonal delays for 3 different
shape factors.

Our numerical simulations indicate that for a large region of
mean delays (between 3 and 10 ms), the outer neurons synchro-
nize independently of the shape of the distribution. These results
can be observed in Fig. 3 Right, where we plot the zero lag
synchronization index of the outer neurons of the network motif
as a function of the shape of the � distribution of axonal delays
and its mean value. Only distributions with unrealistic small
shape factor (i.e., exponentially decaying distributions) prevent
synchrony irrespective of the average delay of the synaptic
connections. For more realistic distributions, there is an exten-
sive region of axonal delays that gives rise to the zero lag

synchrony among the outer neurons. As in the case of single
latencies, we found a drop in the synchronization quality for
distributions with a mean value of approximately � �10–12 ms,
where chaotic firing is observed. The isochronous spiking co-
herence is in general recovered for larger mean delay values.

Up until now, we have considered similar distributions of
axonal delays in each of the 2 branches connecting the relay
neuron to the outer units. This holds when the relay cell occupies
a location that is approximately equidistant from the outer
elements. Nevertheless, we also investigated the situation in
which the axonal delays of each of the 2 pathways of the network
motif are described by dissimilar distributions. In those cases, we
have found that if the distributions of delays for each branch of
the module have different mean values then a nonzero phase lag
appears between the dynamics of the outer neurons. This effect
is illustrated in Fig. 4. For � distributions of delays (which is
equivalent to the single latency case) the lag amounts to the delay
difference that is still much smaller than the sum of the delays
accumulated to communicate both neurons. When studying the
effect of broader distributions of delays, we observed that outer
cells tend to fire with a lag even smaller than the difference in
the mean values of the distributions. Thus, broad distributions of
delays allow distant neurons to fire at almost zero lag even when
the mean delay values of the branches differed in several
milliseconds.

Populations of Distant Neurons Can Also Exhibit Zero Lag Synchrony
via Dynamical Relaying. A further key step in demonstrating the
feasibility of synchronizing widely separated neurons via dynam-
ical relaying is the extension of the previous results to the level
of neuronal populations, the scale at which neuronal microcir-
cuits develop their function (35). Far from being independent,
the dynamical response of any neuron is massively affected by the
activity of the local network of cells or functional unit into which
it is embedded and by the long-range afferents originating in
distant populations. It is also important to consider the random-
like influences usually referred to as background noise, a term
that collects a variety of processes from spontaneous release of
neurotransmitters to fluctuations of unspecific inputs (36, 37). In
such a scenario, we explored whether long-range fibers support-
ing dynamical relaying, and thus indirectly connecting pools of
neurons, are suitable to act as the driving force promoting
remote interpopulation synchrony in the presence of local
interactions and noise sources.

Fig. 3. Effects of broad distributions of axonal delays on synchrony. (Left) �

distribution of delays with different shape factors (k � 1, 5, and 20) and the
same mean (� � 8 ms). (Right) Synchronization index at zero lag of the outer
neurons as a function of the shape factor and mean of the distribution of
delays.

Fig. 4. Effects of dissimilar distributions of axonal delays on the lag of
synchronization. (Left) different � distributions of delays used for the 2
dissimilar branches of the network module. (Upper) Distributions with shape
factor k � 10,000 (quasi-�) and means of 8 and 11 ms. (Lower) Distributions
with shape factor k � 6 and means of 8 and 11 ms. (Right) Lag between the
discharges of the outer neurons as a function of the difference in the mean of
the distributions of delays for the 2 branches. Shape factors k � 6 (squares), k �
8 (circles), k � 10 (diamonds), k � 12 (upright triangles), k � 14 (inverted
triangles), and k � 10,000 (stars) were tested.
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To check whether zero lag-correlated firing is thus induced
among neurons in different populations, we built 3 large net-
works of sparsely connected excitatory and inhibitory IAF
neurons (see Materials and Methods and SI Materials and Meth-
ods). We interconnected the 3 populations following the topol-
ogy of the network motif under study, i.e., the mutual relaying
of activities of 2 external populations onto an intermediate pool
of relay neurons.

We first initialized all 3 networks without the long-range
interpopulation connections. Only the recurrent local connec-
tions and the Poissonian external background were active and
thus responsible for any dynamics in the stand-alone networks.
Consequently, each population initially exhibited spiking of their
neurons in an incoherent and unsynchronized fashion with
respect to neurons belonging to any of the other populations.
Once the long-range synapses were activated, we observed that
the firing of the neurons organized toward the collective syn-
chrony of the outer populations. Fig. 5 illustrates the typical
raster plot, firing histogram, and cross-correlograms of neurons
among the 3 interconnected networks for a conduction delay of
12 ms. Similar results were observed when we explored other
axonal delays in the range of 2–20 ms. The mean period of the
coupled oscillatory activity (�32 ms) was found to be close to the
local rhythm of the isolated networks (�34 ms), and therefore
the coupling had little effect on the frequency of oscillation. A
different situation might appear when the populations are tuned
so that no prominent oscillatory activity emerges in the isolated
networks before they are functionally coupled. In that case, we
found from our model that the reciprocal coupling among the
networks can act as a generator of oscillations and zero lag
synchrony. In the latter case, however, we found a periodicity
strongly influenced by the conduction delay times.

To determine the role of the relay cells (population 2) in

shaping the synchronization among cells belonging to the remote
neuronal networks (populations 1 and 3), we designed the
following control experiment. We investigated the neuronal
dynamics obtained under exactly the same conditions as in the
former approach with the only variation that this time the 2 outer
networks interacted directly. The results are summarized in Fig.
6. The sole change of the topology of the connections meant that
networks 1 and 3, even if engaged in oscillations with similar
characteristics as before, no longer synchronized their spikes at
zero lag.

Discussion
In the previous paragraphs we introduced a network topology that
enhances the zero lag synchronization of distant populations of
neurons. Specifically, we showed that 2 populations of cells can
become synchronized with zero phase lag if coupled reciprocally to
a third population. Synchrony is maintained even when the fibers
connecting the networks accumulate axonal delays of several tens
of milliseconds. This suggests that such topology may contribute to
the large-scale synchronization phenomena reported in a number of
experiments during the last 2 decades (10, 15).

In this context, R. Llinás and other authors have suggested the
reciprocal coupling of cortical areas with the thalamus as a
mechanism to support distributed cortical processing and the
emergence of consciousness (38–40). Edward G. Jones and
other authors have explicitly proposed the dispersed cortical
projections of matrix cells in the dorsal thalamic nuclei together
with the layer V corticothalamic projection as the appropriate
circuitry to extend thalamocortical activity and to form a sub-
strate for synchronization of widespread ensembles of cortical
and thalamic cells (29, 30). The resemblance of such circuitry
with the topology studied here is evident once the identification
of the associative nuclei of the thalamus as our relay population
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Fig. 5. Dynamics of 3 large-scale networks interact-
ing through dynamical relaying. (A) Raster plot of 300
neurons randomly selected among the 3 populations
(neurons 1–100 are from population 1, 101–200 from
population 2, and 201–300 from population 3). The top
20 neurons of each subpopulation (plotted in gray) are
inhibitory, and the rest are excitatory (black). (B) Firing
histogram of each subpopulation of 100 randomly
selected neurons (black, red, and blue colors code for
populations 1, 2, and 3, respectively). (C) Averaged
cross-correlogram between neurons of populations 1
and 2. (D) Averaged cross-correlogram between neu-
rons of populations 2 and 3. (E) Averaged cross-
correlogram between neurons of populations 1 and 3.
At t � 100 ms, the external interpopulation synapses
become active. Bin sizes for the histogram and corre-
lograms are set to 2 ms. Interpopulation axonal delays
are set to 12 ms.
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for cortical activity is performed. However, the principal mes-
sage of our results is not the identification of the physiological
structures potentially responsible for long-range cortical syn-
chrony but to show that the long latencies associated with
cortico–thalamo–cortical loops are compatible with synchroni-
zation across large distances. Coherent oscillations between
remote cortical populations can of course be generated also by
reciprocally coupling these areas to other cortical areas or other
subcortical structures. In fact, the aggregation of several of such
motifs around a putative hub (forming a star-like network with
the center unit playing the role of the relay element) also favors
satellite nodes to spike in zero lag synchrony (41).

The most important requirement for zero phase lag synchro-
nization is that the relay population of cells occupies a tempo-
rally equidistant location from the pools of neurons to be
synchronized. It is significant to point out that recent studies
have identified a constant temporal latency between thalamic
nuclei and almost any area in the mammalian neocortex (42).
Thus, in this scheme, thalamic nuclei occupy a central position
for the mediation of zero phase solutions.

In general, it is quite probable that a variety of mechanisms are
responsible for bringing synchrony at different levels (distin-
guishing for example, among local and long-distance synchrony)
and different cerebral structures. The fact that each thalamus
projects almost exclusively ipsilaterally (the massa intermedia is
clearly inadequate for supporting the required interthalamic
communication) is already an indication that the callosal com-
missure should play a prominent role in facilitating interhemi-
spheric coherence. Lesion studies have since long confirmed this
view (17). However, within a single hemisphere the disruption of

intracortical connectivity by a deep coronal cut through the
suprasylvian gyrus was observed not to disturb the synchrony of
spindle oscillations across regions of cortex located at both sides
of the lesion (6). This finding suggests that subcortical, and in
particular cortico–thalamic interactions, could be responsible for
maintaining both the long-range cortical and thalamic coherence
found in such a regime. It is likely that subcortical loops with
widespread connectivity such as the associative or nonspecific
cortico–thalamo–cortical circuits could run in parallel as an
alternative pathway for the large-scale integration of cortical
activity within a single hemisphere (30, 35, 40, 43). As we have
shown here, with such connectivity pattern even large axonal
conduction delays represent no detriment to the observation of
zero time lag synchronization. It is also important to remark that
connectivity studies in primate cortex have identified the pattern
of connections studied here as the most frequently repeated
motif at the level of cortico–cortical connections in the visual
cortex (44–46). The functional relevance of this topology of
cortical network is unclear but according to our results is ideally
suited to sustain coherent activity.

In summary, the network motif highlighted here has the
property of naturally inducing zero lag synchrony among the
firing of 2 separated neuronal populations. The associative
thalamic nuclei have the cortex as their main input and output
sources and seem to represent active relay centers of cortical
activity with properties well suitable for enhancing cortical
coherence (30). From the experimental side, the relatively
well-controlled conditions of brain slice experiments, allowing
for the identification of synaptically coupled neurons and cell
type, might be a first step for testing whether the topology
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Fig. 6. Dynamics of 2 large-scale networks interact-
ing directly. Population 2 is disconnected from other
populations. Structure of the panels and parameters
are otherwise as in Fig. 5.
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investigated here provides a significant substrate for coherent
spiking activity. Another important issue is how the dynamic
selection of the areas that engage and disengage into synchrony
is achieved. It has been hypothesized that a dynamically changing
coherent activity pattern may ride on top of the anatomical
structure to provide flexible neuronal communication pathways
(47). Based on the properties formerly reviewed, subcortical
structures such as some thalamic nuclei might be promising
candidates to play a role in regulating such coherence and
contribute to the large-scale cortical communication.

Materials and Methods
Two neuronal models were numerically simulated to test the synchronization
properties of the neuronal circuits investigated here.

In the most simplified version of the neuronal motif we focused on the
dynamics of 2 single-compartment neurons that interact with each other via
reciprocal synaptic connections with an intermediate third neuron of the same
type (see Fig. 1 Top). The dynamics of the membrane potential of each neuron
was modeled by the classical HH equations (48) plus the inclusion of appro-
priate delayed synaptic currents that mimic the chemical interaction between
nerve cells.

The second class of models we have considered consists of 3 large balanced
populations of IAF neurons (49). Fig. 5 Upper is a sketch of the connectivity.
Each network consisted of 4,175 IAF neurons of which 80% were excitatory.
The internal synaptic connectivity was chosen to be random, i.e., each neuron
synapsed with 10% of randomly selected neurons within the same population,
such that the total number of synapses in each network amounted to
�1,700,000 contacts. In additional to model background noise, each neuron
was subjected to the influence of an external train of spikes with a Poissonian
profile. The interpopulation synaptic links were arranged such that each
neuron in any population receives input from 0.25% of the excitatory neurons
in the neighboring population. Note that the interpopulation links remained
small in number compared with the local coupling that allows to consider the
system as 3 weakly interacting networks of neurons rather than a single
homogeneous network. Intrapopulation axonal delays were set to 1.5 ms,
whereas the fibers connecting different populations were assumed to involve
much longer latencies to mimic the long-range character of such links.

Parameters, evolution equations, simulation schemes, and data analysis for
these 2 models are detailed in the SI Materials and Methods.
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SI Materials and Methods
Models. For the first class of models investigated, we have simulated
the dynamics of three reciprocally coupled single-compartment
Hodgkin and Huxley (HH) neurons arranged as in the configura-
tion shown in Fig. 1 of the main text. The temporal evolution of the
voltage across the membrane of each neuron is given by

C
dV
dt

� � gNam3h�V � ENa� � gKn4�V � Ek� � gL�V � EL�

� Iext � Isyn, [S1]

where C � 1 �F/cm2 is the membrane capacitance, the constants
gNa � 120 mS/cm2, gK � 36 mS/cm2, and gL � 0.3 mS/cm2 are the
maximal conductances of the sodium, potassium, and leakage
channels, and ENa � 50 mV, EK � �77 mV, and EL � � 54.5
mV stand for the corresponding reversal potentials. According
to HH formulation, the voltage-gated ion channels are described
by the following set of differential equations

dm
dt

� �m�V��1 � m� � �m�V�m, [S2]

dh
dt

� �h�V��1 � h� � �h�V�h, [S3]

dn
dt

� �n�V��1 � n� � �n�V�n, [S4]

where the gating variables m(t), h(t), and n(t) represent the
activation and inactivation of the sodium channels and the
activation of the potassium channels, respectively. The experi-
mentally fitted voltage-dependent transition rates are

�m�V� �
0.1�V � 40�

1 � exp(�(V � 40)�10)
, [S5]

�m�V� � 4exp(�(V � 65)�18), [S6]

�h�V� � 0.07exp(�(V � 65)�20), [S7]

�h�V� � �1 � exp(�(V � 35��10)]�1, [S8]

�n�V� �
�V � 55��10

1 � exp(�0.1(V � 55))
, [S9]

�n�V� � 0.125exp(�(V � 65)�80). [S10]

The synaptic transmission between neurons is modeled by a
postsynaptic conductance change with the form of an � function

��t� �
1

�d � �r
�exp(�t��d� � exp(�t�� r)), [S11]

where the parameters �d and �r stand for the decay and rise time of
the function and determine the duration of the response. Synaptic
rise and decay times were set to �r � 0.1 and �d � 3 ms, respectively,
for the simulations exhibited in Results in the main text. Other sets
of values running from 0.1 to 7 ms were also tested for such time
constants. Finally, the synaptic current takes the form

Isyn�t� � �
gmax

N �
�l

�
spikes

��t � tspike � �l��V�t� � Esyn�,

[S12]

where gmax (here fixed to 0.05 mS/cm2) describes the maximal
synaptic conductance, and the internal sum is extended over the
train of presynaptic spikes occurring at tspike. The delays arising from
the finite conduction velocity of axons are taken into account
through the latency time �l in the � function. Thus, the external sum
covers the N different latencies that arise from the conduction
velocities that different axons may have in connecting two neuronal
populations. N was typically set to 500 in the simulations. For the
single-latency case, all �l were set to the same value, whereas when
studying the effect of a distribution of delays, we modeled such
dispersion by a � distribution with a probability density of

f��l� � �l
k�1 exp(��l�	)

	k��k�
, [S13]

where k and 	 are shape and scale parameters of the � distri-
bution. The mean time delay is given by �̂l � k	.

Excitatory and inhibitory transmissions were differentiated by
setting the synaptic reversal potential to be Esyn � 0 mV or Esyn �
�80 mV, respectively. An external current stimulation Iext was
adjusted to a constant value of 10 �A/cm2. Under such conditions,
a single HH-type neuron enters into a periodic regime, firing action
potentials at a natural period of Tnat � 14.66 ms.

The second class of models we have considered consists of three
large balanced populations of integrate and fire (IAF) neurons.
Each population was composed of 4,175 IAF neurons from which
�80% were excitatory. The local connectivity was sparse and
random. Each neuron received thus a synapse from 10% of
randomly selected cells inside its population and from 0.25% from
the excitatory class of the neighboring populations. The voltage
dynamics of each neuron was then given by the following equation

�m

dVi

dt
� � Vi�t� � RIi�t�, [S14]

where �m stands for the membrane constant and I(t) is a term
collecting the currents arriving to the soma. The latter is decom-
posed in postsynaptic currents and external Poissonian noise

RIi�t� � �m �
j

Jj �
k


�t � tj
k � �l� � A�i, [S15]

where Jj is the postsynaptic potential amplitude, tj
kis the emission

time of the kth spike at neuron j, and �l is the transmission axonal
delay. The external noise �i is simulated by subjecting each neuron
to the simultaneous input of 1,000 independent homogeneous
Poissonian action potential trains with an individual rate of 5 Hz.
Different cells were subjected to different realizations of the
Poissonian processes to ensure the independence of noise sources
for each neuron. Jexc and A amplitudes were set to 0.1 mV. The
balance of the network was controlled by setting Jinh � �g Jexc, with
g ranging from 3.5 to 4 to compensate the outnumbering of
excitatory units.

The dynamics of each neuron evolved from the reset potential of
Vr � 10 mV by means of the synaptic currents up to the time when
the potential of the ith neurons reached a threshold of 20 mV, a
value at which the neuron fires and its potential relaxes to Vr. The
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potential is clamped then to this quantity for a refractory period of
2 ms during which no event can perturb this neuron.

Simulations. The set of Eq. S1–S12 was numerically integrated
using the Heun method with a time step of 0.02 ms. For the first
class of models we investigated, i.e., the three HH cells neuronal
circuit, we proceeded as follows. Starting from random initial
conditions, each neuron was first simulated without any synaptic
coupling for 200 ms, after which frequency adaptation occurred,
and each neuron settled into a periodic firing regime with a
well-defined frequency. The relation between the phases of the
oscillatory activities of the neurons at the end of this warm-up
time was entirely determined by the initial conditions. After this
period and once the synaptic transmission was activated, a
simulation time of 3 s was recorded. This allowed us to trace the
change in the relative timing of the spikes induced by the synaptic
coupling in this neural circuit.

The second class of model involving the interaction of heter-
ogeneous large populations of neurons was built with the
neuronal simulator package NEST (1). The simulation of such
networks uses a precise time-driven algorithm with the charac-
teristic that the spike events are not constrained to the discrete
time lattice. In a first stage of the simulation the three popula-
tions were initialized being isolated from each other and let them
to evolve just due to their internal local connectivity and external
Poissonian noise. In a subsequent phase, the three populations
were interconnected according to the motif investigated here
and simulated during 1 s.

Data Analysis. The strength of the synchronization and the phase
difference between each individual pair of neurons (m, n) were
derived for the first model of three HH neurons by the compu-
tation of the order parameter defined as

�t� �
1
2

�exp(i�m� t�) � exp(i�n� t�) � , [S16]

which takes the value of 1 when two systems oscillate in-phase
and 0 when they oscillate in an antiphase regime or in an
uncorrelated fashion. To compute this quantifier, it is only
necessary to estimate the phases of the individual neural oscil-
lators. An advantage of this method is that one can easily
reconstruct the phase of a neuronal oscillation from the train of
spikes without the need of recording the full membrane potential
time series (2). The idea behind this is that the time interval
between two well-defined events (such as action potentials)
defines a complete cycle, and the phase increase during this time
amounts to 2�. Then, linear interpolation is used to assign a
value to the phase between the spike events.

The synchrony among the large populations of neurons of the
second model studied in the article was assessed by the compu-
tation of averaged cross-correlograms. For that purpose, we
randomly selected three neurons (one from each of the three
populations) and computed for each pair of neurons belonging
to different populations the histogram of coincidences (bin size
of 2 ms) as a function of the time shift of one of the spike trains.
We computed the cross-correlograms within the time window
ranging from 500 to 1,000 ms to avoid the transients toward the
synchronous state. The procedure was repeated 300 times to give
rise to the estimated averaged distributions of coincidences
exhibited in Figs. 5 and 6 in the main text.

Stability Computations. In this section, we follow an analytical
approach to compute the stability of the zero lag synchronization
of outer neurons interacting through a dynamical relaying ele-
ment (see the motif shown in Fig. 1 Top in the main text). In
particular, we demonstrate that the stability of such solution
extends over larger regions of the axonal delay parameter than

for the case of only two neurons interacting directly. These
calculations are performed under the phase reduction approx-
imation of the spiking dynamics of neurons, which assume that
the oscillatory activity of each neuron can be described by a
phase variable.

The dynamics of each cell in the motif is then described as

d	i

dt
�

1
Ti

� �
n,k

ai,k
�t � tk
n � ����	i�, [S17]

where 	i is the phase of each neuron within its spiking cycle, Ti
amounts to the natural period, ai,k is the strength of the interaction
between neurons, and tk

n represents the time of the nth spike of the
kth neuron (3). The axonal delay in the communication between
the neurons is taken into account by the temporal latency �. The
pulse-coupled interaction among the neurons is captured by the
phase response curve (PRC) �(	). This curve characterizes the
change in the cycle period (phase shift) of an oscillator induced
by a perturbation as a function of the timing at which it is
received. It is defined as

��	� � 1 �
T*�	�

T
, [S18]

where T* is the new period of the oscillation induced by a
perturbation injected at the phase 	. PRCs of neurons and many
other biological oscillators have been measured experimentally
as well as computed for models and provide a rigorous frame-
work to predict the dynamical properties of spiking neurons (4,
5). A recent example of the use of the PRC method in small
networks of biological neurons can also be found in ref. 6.

Once we establish the basic equations for the pulse-coupled
interaction among neurons, we proceed by computing the possible
phase locked states. Before that step we change first the reference
system of our phase variables by defining the new phase � such that
	 	 vt 
 �(t), with v � 1/T. Assuming identical natural periods of
the cells (v1 � v2 � v3 � v), Eq. S17 is rewritten for the motif of three
neurons interacting through dynamical relaying as

d�1

dt
� a1,2�

n


�t � t2
n � ����vt � �1�,

d�2

dt
� a2,1�

n


�t � t1
n � ����vt � �2�

� a2,3�
n


�t � t3
n � ����vt � �2�,

d�3

dt
� a3,2�

n


�t � t2
n � ����vt � �3�. [S19]

Following ref. 3 in the weak coupling case, one can approximate

the nth spiking time of each neuron as t i
n �

n � � i

v
. Substituting

this expression in Eq. S19 and averaging the instantaneous
coupling over a full period of the oscillation results in

d�1

dt
� a1,2���1 � �2 � v��,

d�2

dt
� a2,1���2 � �1 � v�� � a2,3���2 � �3 � v��,

d�3

dt
� a3,2���3 � �2 � v��. [S20]
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Phase-locked solutions take the form �i(t) � �t 
 �i, with �i
being a constant. The existence of the zero phase lag solution
between the outer neurons (�1 � �3) requires the following
conditions being satisfied simultaneously

a1,2 � a3,2,

�a2,1 � a2,3����2 � �1 � v�� � a1,2���1 � �2 � v��. [S21]

For simplicity, we consider the case where synaptic strength is
normalized by the number of afferent inputs of each neuron so
that the total coupling strength per neuron is the same (a2,1 

a2,3 � a1,2 	 a). In such case, the second condition is simply �(�2
� �1 
 v�) � �(�1 � �2 
 v�). This condition can have multiple
solutions depending on the specific PRC of the neuron class that
we are interested in. In any case, two important solutions that
hold for any PRC are �1 � �2 � 0 and �1 � �2 � 1/2. These
solutions are the in-phase and antiphase relations for nearest
neighbors oscillators.

A linear stability analysis for perturbations of the phase-
locked solutions (�i � �t 
 �i 
 
�i) gives rises to the system

d
�1

dt
� a����1 � �2 � v���
�1 � 
�2�,

d
�2

dt
�

a
2

����2 � �1 � v���2
�2 � 
�1 � 
�3�,

d
�3

dt
� a����1 � �2 � v���
�3 � 
�2�, [S22]

where � stands for the derivative operator. The eigenvalues of the
characteristic equation are �1 � a[��(�1 � �2 
 v�) 
 ��(�2 �
�1 
 v�)], �2 � 0, and �3 � a��(�1 � �2 
 v�) for the
corresponding eigenvectors V� 1 � [1,���(�2 � �1 
 v�)/��(�1 �

�2 
 v�),1], V� 2 � (1,1,1), and V� 3 � (�1,0,1). For the in-phase
and antiphase nearest-neighbors relations, the stability condition
of the negativity of the eigenvalues reduces to the cases of
a��(v�)  0 and a��(1/2 
 v�)  0, respectively. The main role
of the delay in this simplified description of the neuronal
dynamics is to shift the phase at which a neuron receives the
perturbation from the other neurons, which can substantially
modify the stability of the solutions.

It is important to notice that for two directly coupled neurons,
the zero phase lag synchronization exclusively corresponds to the
in-phase nearest-neighbor relation. However, for the case of
three neurons interacting as arranged in a bidirectional chain,
both the nearest-neighbor in-phase and antiphase relations
result in a zero phase solution for the outer neurons in the motif.
This allows the outer neurons to fire isochronously for such
delays where any of the two nearest-neighbor phase relations are
stable and thus increases the delay range over which zero phase
synchrony can appear. The precise range of stability must be
computed specifically for each type of PRC according to the
former stability criterion, but a general result is that such range
is larger for the network motif under study than for the direct
coupling of two neurons. In fact, when computing the phase
relation for nearest neighbors in the full HH model of three
neurons interacting through dynamical relaying, we could ob-
serve how this relation strongly varies as a function of the axonal
delay (see Fig. S1). For some delays, the nearest-neighbor
neurons were in-phase, but varying the delay they were observed
to enter into states in which the antiphase solution dominated.
For only two directly coupled neurons such changes limited the
range of delays for which they could synchronize without any lag.
However, the phase relation between the outer neurons 1 and 3
in the relaying motif was unsensitive to such sudden changes in
the nearest-neighbor phase relation and remained in a zero lag
solution for almost all explored delays up to 30 ms.
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Fig. S1. Synchronization index at zero lag for pairs of HH neurons 1 and 3 (squares), 1 and 2 (upright triangles), and 2 and 3 (inverted triangles) as a function
of the axonal delay. The coupling is excitatory, and the neurons are interacting according to the scheme in Fig. 1 Top in the main text. The sudden decays of the
synchronization index between nearest neighbor neurons usually indicate the transitions to antiphase states. Notice that the zero-phase relation between
neurons 1 and 3 is almost insensitive to such changes.
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